32 research outputs found

    Arabidopsis responds to Alternaria alternata volatiles by triggering plastid phosphoglucose isomerase-independent mechanisms

    Get PDF
    Sánchez-López, Ángela María et al.Volatile compounds (VCs) emitted by phylogenetically diverse microorganisms (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote photosynthesis, growth, and the accumulation of high levels of starch in leaves through cytokinin (CK)-regulated processes. In Arabidopsis (Arabidopsis thaliana) plants not exposed to VCs, plastidic phosphoglucose isomerase (pPGI) acts as an important determinant of photosynthesis and growth, likely as a consequence of its involvement in the synthesis of plastidic CKs in roots. Moreover, this enzyme plays an important role in connecting the Calvin-Benson cycle with the starch biosynthetic pathway in leaves. To elucidate the mechanisms involved in the responses of plants to microbial VCs and to investigate the extent of pPGI involvement, we characterized pPGI-null pgi1-2 Arabidopsis plants cultured in the presence or absence of VCs emitted by Alternaria alternata. We found that volatile emissions from this fungal phytopathogen promote growth, photosynthesis, and the accumulation of plastidic CKs in pgi1-2 leaves. Notably, the mesophyll cells of pgi1-2 leaves accumulated exceptionally high levels of starch following VC exposure. Proteomic analyses revealed that VCs promote global changes in the expression of proteins involved in photosynthesis, starch metabolism, and growth that can account for the observed responses in pgi1-2 plants. The overall data show that Arabidopsis plants can respond to VCs emitted by phytopathogenic microorganisms by triggering pPGI-independent mechanisms.This work was supported by the Comisión Interministerial de Ciencia y Tecnología and Fondo Europeo de Desarrollo Regional, Spain (grant nos. BIO2010–18239 and BIO2013–49125–C2–1–P), by the Government of Navarra (grant no. IIM010491.RI1), by the I-Link0939 project from the Ministerio de Economía y Competitividad, by the Ministry of Education, Youth, and Sports of the Czech Republic (grant no. LO1204 from the National Program of Sustainability), by Palacky University institutional support, by predoctoral fellowships from the Spanish Ministry of Science and Innovation (to A.M.S.-L. and P.G.-G.), and by postdoctoral fellowships from the Public University of Navarra (to M.B. and G.A.).Peer Reviewe

    Serum Exosome Isolation by Size-Exclusion Chromatography for the Discovery and Validation of Preeclampsia-Associated Biomarkers

    No full text
    Exosomes are extracellular nanovesicles of complex and heterogeneous composition that are released in biofluids such as blood. The interest in the characterization of exosomal biochemistry has increased over the last few years as they convey cellular proteins, lipids, and RNA that might reflect the biological or pathological condition of the source cell. In particular, association of changes of exosome proteins with specific pathogenic processes arises as a promising method to identify disease biomarkers as for the pregnancy-related preeclampsia. However, the overlapping physicochemical and structural characteristics of different types of extracellular vesicles have hindered the consolidation of universally accepted and standardized purification or enrichment protocols. Thus, it has been recently demonstrated that the exosomal protein profile resulting from in-depth proteomics analyses is highly dependent on the preparation protocol used, which will determine the particle type specificity and the presence/absence of contaminating proteins. In this chapter, an isolation method of serum exosomes based on size-exclusion chromatography (SEC) using qEV columns (Izon) is described. We show that this method is fast and reliable, as the population of exosomes isolated is homogeneous in terms of size, morphology, and protein composition. This exosome enrichment method is compatible with downstream qualitative and quantitative proteomic analysis of the samples.CNB-CSIC lab is a member of Proteored, PRB2-ISCIII and is supported by grant PT13/0001, of the PE I + D + i 2013–2016, funded by ISCIII and FEDER
    corecore